Search within:

Faculty with Undergraduate Student Research Opportunities in Biology

The following faculty can be contacted about undergraduate research opportunities for Biological Sciences students at Ohio University. They may be in the Biological Sciences Department of the Biomedical Sciences Department.

Dr. Diego Alvarado-Serrano

Spatial population genomics

Dr. Fabian Benencia

Molecular Biology, Tumor Immunology

我的

Dr. Mark Berryman

Cell Biology

Th

Dr. Ronan Carroll

Bacterial Pathogenesis

再保险

Dr. Xiaozhuo Chen

Molecular and Cellular Biology of Cancer and Anticancer Therapeutics

Th

Dr. Brian Clark

Neuromuscular Physiology

My research interests include identifying adaptations in neural and skeletal muscle properties following prolonged periods of alterations in muscle activity level (i.e. disuse, exercise training), exercise physiology, the mechanisms of human skeletal muscle fatigue, and clinical neuromuscular pathophysiology. Research is conducted on humans (both healthy and diseased) and utilizes a combination of techniques including electromyography, electrocardiography, peripheral nerve stimulation, magnetic brain stimulation and ultrasound imaging. The collective long-term goal of this research is to determine the physiological mechanisms that regulate neuromuscular performance following acute and chronic changes in activity, as well as in clinical populations who present with strength losses and/or excessive fatigue (i.e. cerebral palsy, chronic fatigue syndrome, elderly, post-op, etc).

Dr. Leslie Consitt

Metabolic Physiology

The main purpose of my laboratory is to investigate the cellular mechanisms controlling skeletal muscle glucose and lipid metabolism and how impairments in these mechanisms contribute to insulin resistance in conditions such as obesity, diabetes, and aging. A particular emphasis is placed on the examination of the insulin signaling cascade in skeletal muscle to determine mechanisms of impairment including the role that lipids and cytokines may have on insulin signaling. A number of experimental models are incorporated in the lab to effectively study metabolism including human, rodent, and cell culture models. Additionally, a number of (in vivo) models are used to manipulate metabolism including exercise and nutritional intake. 

Dr. Karen Coschigano

Molecular/Cellular Biology

Dr. Mitchell Day

Auditory Neuroscience

电动汽车

Dr. Janet Duerr

Cell Biology, Neurobiology, Genetics

The Duerr Lab uses a model organism, the small (1 mm) soil nematode Caenorhabditis elegans, to study genes and proteins involved in neurotransmission by monoamines such as dopamine and serotonin. This simple animal has exactly 302 identified neurons and an easily manipulated genome with 20,225 sequenced genes. We use genetics, molecular biology, cell biology, microscopy, and behavioral assays to study monoamine signaling. We are examining when and where monoamines are made and how this expression is regulated. We are also interested in the interactions between monoamines and the effects of changes in different monoamine regulators on neuronal function and behavior. A final goal is to use our system to understand effects and genetic targets of prescribed drugs called monoamine oxidase inhibitors, which are used to raise monoamine levels in humans.

Sean T. Giery

Evolutionary ecology

Dr. Mario Grijalva

Immuno-parasitology, Molecular and Cell Biology

Research undergoing in my laboratory aims to understand the biology of tropical disease at the molecular, cellular, individual, community and global levels. Currently our projects involve research in my laboratory at Ohio University, as well as in the Tropical Disease Institute's projects in Ecuador. Activities within these projects include studies dealing with basic mechanisms of the disease, serological and molecular diagnostic test development, clinical research, epidemiology, vector biology, Geographical Information System, sociology, community education, communications, etc.

Dr. Scott Hooper

Neuroscience

Rhythmic neuronal activity is widespread in nervous systems and plays a central role in certain types of sensory processing, in motor pattern production, and possibly (in vertebrates) in attention. These rhythms are generated endogenously (i.e., they can continue without rhythmic sensory input) by central neural networks, and hence they are an example of the nervous system's ability to spontaneously create patterns. Network rhythmicity has been extensively studied in several invertebrate preparations and in the lamprey, and we now have a good general understanding of the mechanisms underlying it. However, we understand relatively little about its dynamic regulation (e.g., how rhythmic pattern frequency and phasing are controlled), and, in the case of motor systems, how these neural networks interact with their peripheral effectors (the musculoskeletal system) so as to continually generate behaviorally relevant, functional motor outputs.

Dr. Kelly Johnson

Insect Nutritional Ecology, Physiological Stress Responses of Plant Feeding Caterpillars and Aquatic Insects

My research focuses on the environmental physiology of insects, with a particular focus on the interface of nutrition, stress responses, and metabolic fate of toxicants. Current projects fall into two broad categories:

1) Chemical Ecology of Insect-Plant interactions—Using the tomato and tomato hornworm caterpillar as a model system, I am interested in how changes in leaf antioxidants (vitamin C, glutathione, phenolics) brought on by environmental stress (drought, heat) impacts the growth of caterpillars. In particular, I am investigating the susceptibility of caterpillars to oxidative stress (free radical damage) and how it may be exacerbated or alleviated by the chemistry of the hostplant they choose to feed on.

2) Aquatic Insect Ecology—Many streams in southeastern Ohio are impacted by acid and heavy metals from mine drainage, sedimentation and other land use practices. Over the last few years, our lab has collaborated with members of the Appalachian Watershed Research Group, the Voinovich Center, the Midwestern Biodiversity Institute, and state agencies to develop better aquatic macroinvertebrate sampling and bioassessment methods. We currently receive funding from the US EPA and Ohio Department of Natural Resources and are sampling over 100 sites in southeastern Ohio to improve stressor diagnosis and monitor the biological recovery at remediated sites. Undergraduates can assist with fieldwork, sorting and identifying macroinvertebrates, and conduct independent projects to investigate effects of specific stressors on the abundance, distribution and functional role of selected stream macroinvertebrates.

Dr. John Kopchick

Molecular Biology

The molecular mechanism of growth, obesity, aging, and diabetes are the focus areas of my laboratory. We clone and express genes involved in these processes. Genomics and proteomics studies are important components of our work. Transgenic and gene disrupted mice also are used in our projects. Overall, we hope to discover diagnostics, therapeutic targets, or therapies for disorders related growth, obesity, aging, and diabetes.

Dr. Shawn Kuchta

Natural Selection, Adaptation, Speciation, and Systematics

我的

Dr. Daewoo Lee

Synaptic Physiology, Neurodegeneration

My laboratory is interested in understanding how trillions of brain cells are talking to each other and orchestrating complex behaviors such as leaning and memory. We also study what happens if some of those brain cells are not functionally working. One of current projects in the lab is to understand molecular and cellular basis of Parkinson's disease - dopamine disaster!

We chose Drosophila as a model animal to study brain function and disorders due to its powerful and sophisticated genetics. Our research is being performed using a multidisciplinary approach including whole-cell recording, optical imaging, immunostaining, amperometric and molecular genetic techniques.

Dr. Kevin Lee

Molecular and Cellular Biology

Th

Dr. Yang Li

Neuroscience

Overall research interest in my laboratory is to understand cell-to-cell communication in the central nervous system (CNS) and how the brain modifies its function and structure through experiences. The on-going research is focused on the role of Zn2+ as a synaptically released neuromodulator and/or transmembrane signal in the neuronal activity and intracellular signaling, using a multidisciplinary approach, combining electrophysiology, fluorescence imaging, and immunohistochemistry. Specifically, we plan to pursue two lines of research: (1) to study the role of Zn2+ in neuronal transmission and synaptic plasticity in the CNS. The considered research topics/missions include LTP and its implication in learning and memory. (2) to investigate neural action in neuron regeneration and neurotoxicity such as brain ischemia (stroke), epilepsy, alcoholism, stress & depression (bipolar), Alzheimer's disease.

Dr. Chunmin C. Lo

Neurophysiology and Ingestive Behaviors

My long-term research interests involve the roles of apolipoproteins and neuropeptides in the control of energy homeostasis, and pathogenesis of obesity, diabetes and cardiovascular diseases. The current projects focus on apolipoproteins and neuropeptides act on vagal and sympathetic nerves to hindbrain and hypothalamus for the control of lipid transport, glucose metabolism and energy homeostasis. Using denervation of sensory and sympathetic nerves and intracerebroventricular cannula implantation as well as genetic mouse models, we investigate the effect of peripheral and central apolipoproteins in the regulation of lipid deposition and combustion in adipose tissue and liver, and energy expenditure through neural activation. In addition, neural activation and sympathetic activity in peripheral tissues and brain are determined using immunohistochemistry and norepinephrine turnover rate.

Dr. Ramiro Malgor

Pathology

The purpose of our laboratory is to investigate pathogenesis of disease. We study the histomorphological and biochemical alterations of tissues from in vitro and in vivo models. As approach we use various techniques such as immunohistochemistry and immunofluorescence, in-situ hybridization and image analysis.

Our current research topic is vascular pathology focused on atherosclerosis. Using a genetically modified mouse model (Apo e-/-) we are trying to understand not only the pathogenesis but also the effect of some new drugs on it; as well as its relation to other chronic diseases such as type 2 diabetes.

We have collaborative researches with other laboratories in OHIO, which makes our laboratory an interdisciplinary environment.

Dr. M. Raquel Marchan-Rivadeneira

Ecomorphology, Phylogeography, Speciation, Species Distribution, Taxonomy

My academic research experience and interests include species delimitation and genetic characterization of populations, as well as exploring how the environment influences the genetic and morphological configuration of individuals and populations. For this, I use standard molecular laboratory techniques involved in data collection (DNA/RNA extraction, next-generation sequencing, and genotyping) as well as data curation and analysis (sequence data management, phylogenetic reconstruction, genetic inference). In addition, I integrate ecological and morphological data to explore how the phenotype is determined by the interaction between genotype and environment using multivariate techniques for data analysis. 

Dr. Kelly McCall

Molecular & Cell Biology of Disease Expression

The focus of my research is two-fold; 1) understanding the role of chronic inflammation and toll-like receptor signaling in the development of autoimmune and inflammatory diseases and cancer and 2) using the new-found knowledge to develop novel diagnostic and therapeutic strategies for the diagnosis and/or treatment of these diseases. Our research efforts are currently focused on Type I Diabetes, Type 2 Diabetes and its associated metabolic diseases/consequences such as non-alcoholic fatty liver disease, as well as sepsis, and neurodegenerative diseases, which are all associated with chronic inflammation. We use a molecular and cell biology approach which is then validated for efficacy in vivo in animal models of disease as potential novel therapeutics.

Dr. Donald Miles

Evolutionary Physiology, Functional Ecology, and Ecomorphology

Dr. Molly Morris

Behavioral Ecology, Animal Behavior

我的

Dr. Erin Murphy

Bacterial Pathogenesis

The research in my laboratory is focused on understanding how bacteria survive and cause disease within the human host. My laboratory studies Shigella dysenteriae which the causative agent of shigellosis, a severe diarrheal disease. S. dysenteriae invades the cell of the human colonic epithelium where it multiplies and spreads from one cell into neighboring cells. In order to establish a productive infection the bacteria must express a very specific set of genes which encode proteins that are required for invasion, replication, nutrient acquisition and evasion of the human immune defenses. My interest is in understanding how S. dysenteriae senses the environment within the host and the molecular mechanisms used to regulates the expression of the specific genes required for infection. I encourage the participation of motivated undergraduates who are interested in the experiencing, hands on, the rewards and challenges of experimental science.

Dr. Corinne Nielsen

Neurovascular Physiology & Disease

Dr. Craig Nunemaker

Physiology, Diabetes

Dr. Patrick O'Connor

Evolutionary Morphology and Vertebrate Paleontology

我的

Dr. Vishwajeet Puri

Cell Biology and Disease Mechanisms

Obesity, type 2 diabetes, and cardiovascular disease are associated disorders. My laboratory performs basic and translational research to study the pathogenesis and pathophysiology of these metabolic diseases. As model systems, we use human samples, genetically engineered mice, and various cell lines to study the physiological and molecular pathways underlying fat metabolism, vascular function, and energy metabolism. We also have various national and international collaboration going on in the laboratory. My laboratory is also working on identifying therapeutics of type 2 diabetes and cardiovascular disease.

Dr. Willem Roosenburg

Vertebrate Population Biology, Evolutionary Ecology

Tom Rosol, DVM, Ph.D., MBA

Cancer Research

The Rosol laboratory focuses on the pathogenesis and treatment of cancer metastasis, particularly to bone, which is one of the major causes of death in people with prostate and breast cancer and lymphoma/myeloma. The lab is in ARC (Academic and Research Center) and uses molecular biology, tissue culture, organ culture, and mouse models of cancer and metastasis with in vivo bioluminescent imaging to address important biomedical questions.  

Dr. Nancy Stevens

Functional Morphology and Vertebrate Paleontology

My research explores how faunas respond to global environmental change through time. I am particularly interested in faunal transitions across the Paleogene-Neogene boundary in Africa and the Arabian Peninsula, and the responses of endangered animals to habitat loss today. Research projects involve microvertebrate sampling strategies and laboratory techniques in vertebrate paleontology, uCT studies of fossil mammals from the East African Rift of Tanzania, kinematics of movement and posture in the Old World Monkeys of Vietnam and East Africa, and positional behavior and field kinematics of Malagasy lemurs and Asian lorises.

Dr. Tomohiko Sugiyama

Biochemistry and Molecular Biology

My research focuses on DNA repair and mutagenesis in molecular level. We analyze DNA polymerases of yeast Saccharomyces cerevisiae and humans to understand their contributions to damage-induced and spontaneous mutagenesis.

Major goals are

  • To understand how polymerases convert DNA damage into mutation.
  • To elucidate mutation signatures (types and rates of mutations) that are created by polymerases upon DNA damages.
  • To elucidate mutation signatures by error-prone DNA polymerases on undamaged DNA.
  • To develop a new method to detect and analyze new environmental mutagens.

Dr. Soichi Tanda

Genetics, Molecular and Developmental Biology

Th

Dr. Nathan Weyand

Bacterial Pathogenesis

Dr. Kelly Williams

Ecology

My research interests are primarily in avian and forest ecology. I am broadly interested in how organisms respond to environmental variation. More specifically, I am interested in how habitat structure affects the distribution and availability of resources (e.g., arthropods), and how individual behavioral variation affects the acquisition and allocation of resources to offspring. My research employs a variety of field and lab techniques to determine how the environment and individual variation in behavior affect variation in reproduction and survival of breeding birds. Undergraduate research opportunities involve a range of topics including incubation behavior, provisioning, food resources (identification of arthropod prey), predation and parasitism, spatial ecology and social interactions.

Dr. Susan Williams

Evolutionary and Functional Morphology

再保险

Dr. Lawrence Witmer

Comparative Anatomy and Paleontology

再保险

Dr. Marketa Zimova

Global Change Ecology

Ongoing rapid environmental transformation exposes organisms to novel stressors which can, in the absence of adaptation, contribute to population declines and extinction. In my lab, we seek to understand these dynamics and predict their effects on wild vertebrate populations, with a focus on mammals and birds. In our research, we use a broad range of tools and approaches including intensive field surveys, museum specimens, high-resolution climate and environmental data, genetics, and advanced statistical modelling. Ultimately, our goal is to better guide conservation and management of wild populations and species threatened by global environmental change. Undergraduate students gain hands-on experience by assisting with fieldwork (e.g., remote camera trapping, live-trapping, radiotelemetry), labwork (e.g., DNA extractions), and statistical analyses, and are encouraged to conduct independent research projects.