Cellular + Biomolecular Engineering

Grad Carlson conducting cellular  biomedical research

Understanding cellular behavior at the molecular level is often the key to understanding human disease. Our researchers who are investigating at the cellular and molecular level further the understanding of the molecular mechanisms of cells to guide the development of the next generation of diagnostics and therapeutics for such diseases as diabetes and cancer.

Mechanisms + Molecular Therapeutics for Autoimmune-Inflammatory Disease and Atherosclerosis

Autoimmune disease occurs when one's own body mounts an immune-inflammatory response against its own tissues. This set of diseases includes Graves' disease and Hashimoto's disease, both pathologies of the thyroid; colitis, which is a pathological inflammation of the intestine; and diabetes. A highly collaborative group involving Kelly McCall, assistant professor of endocrinology, Ramiro Malgor, associate professor of pathology, Fabian Benencia, associate professor of immunology, Frank Schwartz, J.O. Watson Endowed Chair for Diabetes Research and professor of endocrinology, and Douglas Goetz, professor of chemical and biomolecular engineering, seeks to identify the molecular mechanisms that underlie autoimmune-inflammatory disease, then exploit the understanding to develop novel diagnostics and therapeutics.

The current focus is on the role of Toll-Like Receptors (TLRs) in pathogenesis and progression. Recently, this group has found evidence that TLRs may be operative in certain cancers, suggesting a link between autoimmunity and cancer. TLRs have also been implicated in atherosclerosis (hardening of the arteries), and the group is actively exploring the molecular alterations that occur in the vasculature as an atherosclerotic plaque develops. This latter effort involves Mitch Silver, DO, of MidOhio Cardiology and Vascular Consultants.

Tumor Microenvironment, Immune Response, and Angiogenesis

The tumor microenvironment subverts the function of immune cells, thus using the same cells in charge of rejecting the tumor to promote its growth. A central issue in tumor immunology is to identify the decisive factors that determine the immunosuppressive status of tumor-associated antigen-presenting cells. Novel mechanistic insights into the processes of antigen-presenting cell differentiation and activation are likely to have potential impact also in the field of tumor immunology and immunotherapy. Fabian Benencia, associate professor of immunology, and Kelly McCall, assistant professor of endocrinology, investigate the effect of the tumor microenvironment on immune cells and their participation in neoangiogenesis. They seek to apply this knowledge to develop novel therapies and vaccines for cancer.

Cell Adhesion in Cancer, Pathological Inflammation, and Drug Delivery

Cellular adhesion is the means by which cells bind to other cells or matrix proteins to form tissues and/or generate motion. At the molecular level, the adhesion is mediated by glycoproteins and/or glycolipids that protrude from the cell surface and form bonds with complementary constructs present on other cells or in the extracellular matrix. An aggregate of these non-covalent bonds supports a force that allows the cell to remain stationary or can be used by the cell as a means of locomotion. Cell adhesion is germane to a host of pathological processes, including cancer and pathological inflammation (e.g., arthritis). The research of three faculty members at Ohio University is directly related to cell adhesion.

交流

Medicinal Chemistry and Small Molecule Antagonists

RNA Chemical Biology and Drug Discovery

Th

Microbiologically Influenced Corrosion and Bioseparations (Including Chromatography Scale-up)

Most microorganisms live in biofilm consortia that provide them with mechanisms that resist harsh environmental conditions including pH and temperature swings and antimicrobial agents. Some biofilms cause fouling and localized corrosion against metals such as stainless steel and other materials used as medical implants. Tingyue Gu, professor of chemical and biomolecular engineering, is interested in biocorrosion mechanisms, mass transfer in biofilms, bio-electrochemistry, and biofilm mitigation.